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ABSTRACT
A method of determining two-dimensional pressure distributions on
arbitrary foils ic explained. The development is based on an approximate
potential theory suggested by Moriya {1941) which is empirically modified in a
manner suggested by Pinkerton (1936) to give an arbitrary lift for a set
incidence and at the same time satisfy the Kutta condition. Interpola~
tion functions for the ordinates are used to reduce the calculation: to
a straightforward numerical procedure which is easily programmed for
machine calculations. (FORTRAN statements for such a computer
program are included.) The results are those of Riegels {1943).
Comparisons are made with othe: theoretical methods for poten-
tial flow and with experimental results. Good agreement with both
calculated and measured pressure distributions is found when the lift
coefficients are matched. The assumption that cavitation occurs
when the local pressure falls o the vapor pressure is not upheld for
the cases considered,
ADMINISTRATIVE INFORMATION
This report is essentially a duplication of o Master's Thesis submitted to the
Graduate School of Cornell University in May 1965. The work was performed at the

Taylor Model Basin under Bureau of Ships Subproject 5S-R009 01 01.



INTRODUCTION

To obtain an accurate esiimate of the octual pressure distribution on two-
dimensionai forms, we have two approaches: (1) fo solve the cumbersome Navier-
Stokes equations governing viscous flow or (2) to use a potential theory with empirical
modifications to approximate real fluid effects. The first approach may be simpiified
to solving the boundary-layer equations for a two-dimensional curved surface, but
the simplification is nominal and the task remains formidable in application.’?
Moreover, as yet, this method is not sufficiently advanced to give accurate results
unless experimental boundary-layer data are known.® The second possibility is based on
potentiui theory which means cimpler develcpment and shorter computation time. As
normally used, this method makes use of the experimental lift which is either available
or can be estimated for conventional feils.

The first satisfactery method of using the experimental lift in potential theory
was developed by Pinkerton in 1936.* He made use of the Beiz (1915) observation®
that empioying the experimentally determined circulation in piace of the theoretical
value gives a pressure distribution that agrees well with measured results over most of
the chord. However, merely inserting the experimentally determined circulation
into potential theory will not, in general, satisfy the Kutta condition that the flow
Ieave the trailing edge smoothly. Pinkerton® was able to retain the measured lift
and also satisfy the smooth-flow condition by introducing an empirical modification

in the profile shape. He applied the modification to a rigorous potentiai theory

*References are listed on page 72.




-, @

i )

L ad

formulated by Theodorsen in 1932.° Although Theodorsen's theory is easier to appiy
than the boundary layer equations, the calculations are still lengthy.

Riegels™ removed this last complication in 1943. He adopted Pinkerton’s idea
of an empirical distortion in the fiow field to an approximcte potential theory
developed by Moriya in 1938.° Riegels made a further simplification by linearizing
the equations on a small pa:ameter introduced in the modification. in oddition, he
used interpolaticn functions for the crdinates which reduce the calculations o
straightforward numerical procedure, requiring only offsets at fixed fractions of the
chord. The linearized numerical procedure of Riegels has been in use for some time*
at the Dovid Taylor Model Basin where it was programmed® for the computers at the
Applied Mathematics Laboratory. In addition to giving the chordwise vressure
distribution, the results of this program can be used to predict cavitation inception
if the assumption is made that the cavitation staris when the local pressure falls
to the vapor pressure of the surrounding liquid. Unfortunately, output from this
program consists of the pressure distribution at only the input points so there is no
assurance that the minimun. is obtained. During the analysis necessary to correct
this omission, i* became obvious that the Riegels derivation * :as quite obscure. A
detailed derivation of the theory was accordingly undertaken, and the results of the
investigation are outlined in this paper. The derivation closely follows later work

of Moriya?” (1941) which is an approximate conformal transformation of the circle

*In 1955, a Model Basin Memorandum (Aero 28) described a method of calculating
pressure distributions over profiles of arbitrary shapes. This memorandum included a
translation of the Riegels paper (Reference 7).



to an cirfoil profile and gives the same equations for the velocity disiribution as his
ecrlier work.
The present contribution to the development is ¢ unified presentation of the
theory, simpiification and extension of the numerical method, and extensive com-
parisons with experiment and theory. In the comparisons with theory, some new
results of considerable simplicity are derived from an exact conformal transformation
of the circular cylinder (see Aspendix A). Airfoil geometry is discussed in Appendix B.
The FORTRAN statements of a new computer program for calculating the pressure
distribution on an arbiirary profile are giver in the paper together with a description
of the program and input instructions. The program statements are listed in Appendix C,
This program will accept foil ordinates at arbitrary stations and interpolate between
them to obtain the ordinates at the required stations.

POTENTIAL PRESSURE DISTRIBUTION FROM
APPROXIMATE CONFORMAL MAPPING

SUMMARY OF DERIVATION

Using the method of conformal transformation, we can easily transform the known
fiow about a simple body to that about an arbitrary profile. As is customary, we take
the circular cylinder for the simple bedy since both its geometry and complex potenticl
are simple in form.

This development retains the two simplifying approximations made by Moriya!”:
(1) a group of transformation coefficients is ignored in the calculations and (2) the
circulation is determined by placing a stagnation point at the trailing edge of this
approximate transformation rather than the exact one. For symmetrical foils, the second

approximation is exact.
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COEFFICIENTS OF THE TRANSFORMATION
A difficulty with all transformations of the circle into an airfoil is thet of matching
the coefficients of the transformation with those of the airfoil. Excepi for special
cases, iteration is required. in the work that follows, we neglect the iteration and
instead evaluate the coefficients with a first approximation to the transformation.
The mcst general mapping function which maintains the type (but not necessarily

magnifude and direction) of the flow ar large distances from the body is given by

- g . - a” L. -
Z—C _'TC ?ZC _-—x-:-!y ,]t
-1 a o 1 n tn

where z is the complex coordinate in the profile plane,
C =A+iB_,
n n n
n=-+1,0,1,2,...
C is the complex variable in the circle plane, and

¢ = rel© , as shown in the figure befow which also shows the orientation of the

flow velocity.

1 imaginary

[{s]
> real




Substituting £ = ae’”, we obtain ¥ enc v on the profile a3

% =A_y cosc-B_y sino- A+ T{A cos - B sin
' !

P

2"

Y=B coxo~ A sino-B8 -TI{B cosnp- A sinne) 3
-1 -1 o 1} n n
where the caopital letter Y is used to denote points on the prcfile. To ensure that
these expressions actually give the ordinates of the profile, the coefficients of the
series must match a similar expansion for the profile cocrdinates. Usually we have

Ogx<land¥ =Y{x). In Apperdi» A, severol foils are derived from exact theory.

For foils which are slender in the horizental direction, it is shown that x is

M~

2 =120 - cest~0(+, )
where 7 and f are the thickness ratio anc camber ratio, respectively, Fer such
siender foils, a siight change in the x value makes an even smaller charnge in the
ordinate (except in regions of large curvature, e.g., the nose). With these facts in
mind, we moke the approximation™ that

x = 1/2(1 + coso) 47
(note that this approximaticn reduces ¢ to a parameter) and Y = Y(0) where Y(©)

is understood to be an implicit Fourier expansion, i.e.,

)= + 5 @ + i 1
Y(o) a ;(oncos n® bn sin ne) [3a7

*Alternatively, this could be the starting point for an iteration eading to the exact
transformation. However, ine results show this approximation fo be sufficiently accurate
for the shapes considered here (see Appendix A).



Matching coefficients with Equation 737, we cbtain

2
Bo=30=]/2" ~ Ydo

c

2- 2-

B +B =a =1/~[ Ycospdp, A -A =b =1/~ [ Ysinpde
-1 1 | e -1 i i o

= 2-
B, =o_ =1/~ :Ycos nrdep, -An=bn =1/~ . Y sinnpdop

o

n> 2
Also, from Equation 47, we know that £ =17 ience rne coefficients are
determiner witn tns exceoricn o7 2 one b . MNoring thaf the infinire series in

Egustions "27 apz 27 are Tourier conjugares anu tnat the A . and &_.terms are not,
we can imrecd Lre s write an exoression to- derermining these conctonis, [woweve ,
the resuirinc exoressions would invoive /—o anc f:-c. 1ne dependence on fnese
coefficients may be elimincted by considering differentials of Equations 27 and 37.

Therefore, expressions which involve only A_‘] and B_1= may be obtained by constructing

the quantities:

2.—
T(p) = dx/op-1/2= § Y'(t) cot {©-1),/2 dt
o]
27
S(p) = dY/dp+1/2= F x’ () cot (p-1)/2 dt F57
o

° F— . . .
where P indicates that the Cauchy Principie Value of the improper integral is to be
taken ond the primss denote differentiction with respect to the argument. Moriya's

notation™s -~ differs from ours since he used the Fourier development which is more

cumbersome tnan the integral and different al form piesented heie.



Substitution of the tronsformation equations (Equations 127 and [37) into

Equation 37 yields

Tl = -2TA | singpt B : cos ¢ 1

sing 1

S(p 2 {A_] cosp-B_

1

With the given airfoil ordinates, the expressions for T and S are
2m

“1/2sin®-1/2= P Y'{t) cot (p - 1)/2 dt
o

T {p)

S{) = 1/2cos0+ Y’ (0)

Equoting Equations [5a] and [6] for ©=0, we obtgin

A = 1/4T +2Y/(0)]
2

By =-1/4nw [ Y'(1) cot t/2 dt
(o]

Nzie: Y{(0) =dY/do) 0=0 =-1/2sin o (dY/'dx)TE is zero, for example,

with profiles having sharp trailing edges. Since not all profiles are of this form,

Y '{G) will be retained in the development.

5a1

rél

71

Although the Fourier conjugates method is only one possibie way of cbtaining

the coefficients, it is shown loter that the group of coefficients T(¢) and S{p) do

appear in the expression for the velocity distribution. Even more important, we have

found that other methods of obtaining only A ! ond B | do not give results which

compare as favorably with exact results as do the T(p) and S(p) expressions.
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LIFT COEFFICIENT

Arguments based on physical concepts lead to the conclusion that there is no
flow around the trailing edge (Kutta condition). Thus, the numerical value of the
circulation is just enough to place a stagnation point at the location on the circle
which tronsforms to the trailing edge of the profile. In the exact transformation,
the value of ¢ which makes x a maximum describes this locotion. In the opproxima-
tion, the maximum value of x isat p=0.

The velocity in the circle plane is found by differenticting the complex potential
F(C) with respect to £. For a circular cylinder inserted in a uniform stream such

that the stream makes an angle 4 with the real axis, the complex potential is

.
ia

FI€) = V [Ce-laﬁ ra? e ':/c] + (T /27) 20 TC/al
where T is the circulation.

With © as the independent variable, the velocity on the circular cylinder

6]
C=ae becomes

dF/St 1, jo =V [e"’lc e iap "2‘”)] +1(T/27a) e ° (8]

Applying the Kutta condition, we put dF/dC = 0 at L = a, which sets

T = 4onsin(ac) 91

Before the circulation can be converted to a iift coefficient, the effect
of the mapping function on the free stream must be investigated. In the circle

plane, the free stream velocity is given as

dF/de | —Ve %

- 0



and ir. the profile plane as

df/dz | =(dF/dL) / (dz/dL) |_-»ve‘i°‘C a/C_,

We define dF/dz |—Ue™ @
Z —
and let C ] = " = K (cos % + i sin x)
But C_] = A_] +|B_]
Thus K = '\/A 2 + B 2
-1 -1
B_y
® = arctan —— 101
A_] N

Equating the two descriptions for the freestream, we find
V = KU/a

= q-z RN

With the above relations, the [ift coefficient is found to be

£y Janr -
1/2P 2 ¢ = 2nV (4 A_]) + (4 B__])*? sin (o - %) [

o
[y

1]

L

where ¢ is the chord and p the fiuid moss density. Hence, y is the angle of zero

[ift in potential flow,
VELOCITY AND PRESSURE DISTRIBUTION

The velocity on the profile q is found by evaluating the expression

i) L Ee ey
g ! dz bod d \a do/ 1z = gef

10
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Performing the operations, we find

2Va lsin(z -4 -sina_|
q = € M3l

Ve @)

Substituting Equation "117 and expanding the right-hand side, we obtain

2
= | B -B  cosp~A ]sinO)cos'x

NN

+(A : cosp- B | sinp - A ]) siny | f141

The combination of transformation coefficients enclosed by parentheses is the
previously defined S (¢p) and T (0}, Equation [51, Hence, the expression for the

nondimensional velocity can be written

9q [ IT(@) ~T(0)7] cos o+ LS (©)-5(0)7 sina
‘\/1/4 siff 0 + Y'(9)*

C

| Clp) cosa + D(0)sina | fs)

where T (0) and S () are given by Equations 161,
Since this method is for steady irrotational flow, Bernoulli's equation

holds and gives the pressure distrikution in coefficient form as

P-P_ a\3
(3
P 1/2PU° U

11



EMPIRICAL MODIFICATION TO ACCOUNT FOR VISCCUS EFFECTS

In Reference 4, Pinkerton shows that an empirical modification to Theodorsen’s
exact potential thecry” gives results which agree reasonably well with experimental
measurements. |In this chapter, we will show how Pinkeiicn's idea can be extended
to the approximate potential theory jusi outlined.

Theodorsen® noted that conventional profiies are similar in shape and that
application of the Jourkowski transformation to an arbitrary profile will yield o
nearly circuler shape of variabie radius 1/4 e? and polar angle ©. The nearly
circular shape can then be transformed into a circle of constant radius
1/4 e %0 gng pclar angle © + ¢ {n). With our notation and the circulation as yet

unspecified, Theodorsen's expression for the velocity on the profile can be put in

the form:
.3. = H - - - ___,...___.r i
3 f© |sin(fa-¢p=-c¢) To%oy |
"0 ]
e? 1+
where flp = [ dp.
a1\
\/ (I +[’&%]> \(sinhglb + sin2(0>
and

= 1/2 [cosh wLE + cosh & cosq)]

1/2 sinhd singp

(Note that this ¢ is different from that used in the previous section.) The expressions

for x and Y are sufficient to determine { and ¢, and from these we can compute

12



27 r -
£ o4 e - Tt + et de
elo) = i/2~ 2 ©{i) cot ¢(©) SUB [] - ‘_“:’ dt
o 2 dt
27 d
L= 1/2- " o)1 +— | dt
0 o dt

Pinkerton's modification® is to add an arbitrary function to € (©). Arguing that the
modification is a result of viscous effects and that the cumulative effect of the

viscous forces are toward the trailing edge, he ickes the addition to ¢ as

', <1+cos@)R
a’ = Ltog\———
2

4 where 2 1 is to be determined from the requirement that the lift be the experimental
value anu R is some constant > 1/2 (if R < 1/2 the velocity goes to infinity at the
nose). Pinkerton considered only the cose R = 1. Since U is the Fourier conjugate
of ¢, a change in ¢ would also cause a change in . However, Pinkerton has
founa that the effect of this change in ¢ is negligible in f (o).

For slender foiis, both ¢ and ¥ are small and we can approximate

x ~ 1/2{1 + cos ©)

Y ~ 1/2¥sin0

(5 5)- ()05

Thus the new expression for velocity is

dl
A = f(p) (H—a') Isin(a-0")-0-¢l-sinlg-x-'7)|
15 U do

where x = ¢(C) when the Kutta condition is satisfied. Comparing this expression

with Equation (137, we can immediately write a similar modification to the

i3



approximate theory given previousiy:

(1, 42) , . .
_ ZKU“"-&?)' sin(a-a’ ~0-x)-sin{a-x-"2qa)

4 -
U —_
\[dxg + ay”
“ip o
T©)cos(n-2")+S(pysin(a-a")+ '
or
q - da’\ |- [T {Q) cos(q-A:;,)’rS(O)sin(a-Aa)‘!
a4 ={1+-— f16]
U do .
\/ sin®p , dY?
4 dp
d ’ © R-]
where £=--A2a sin® R(] + c025 )

Except for notation, this is the soluticn obtained by Riegels.”

Implied in *.e ubove equation is that the lift coefficient is

C, =2~V A_)* + (4B_Y sin (o~ x- &) 071

We se< at once that £ ¢ is a fictitious decrease in 1he geometrical angle of aftack

to give the desired lift. This equation cun be rearranzed to give A in terms

of an experimental lift coeffic’ent

| (exp)
Aa = -}~ arcsin (18]

i (4 A_J+(4B P

With known values of the |ift coefficient, this expression determines Ao, Since
we rarely have specific test data, a representative actual lift curve slope

coefficient and angle of zero lift can be used to find the lift. Assuming these

14
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values are known, we can determine the I1ft coefficient from the expression

C = 2-n{x-12_) 19°
Lexp 7 Oe

where 7 is equal to dC, /da I exp’/ 2-ond ~ s the experimental angle of
e

zero lift. (mand ~ are discussed further later in the paper.)
e

In order to more clecrly show the effect of 2, the velocity distribution will

be linearized on 27. This will be pot i the form of the potential velocity plus

a term multiplicd by 21 . The linearizotion is performed by replacing sin ¢’

by v “and cos o/ by 1. Ignoring all small quantities multiplied by o/, we find*

_‘i_: 1+ d'l, 9 » :0- E(’p) '20"
s (3l -

] - XR R
where E{p) = (1/2} - -x D ()
Yi/4sivo+ Y ' (p)
and (-%—) is the potential velocity. In addition to showing the effect
A o = 0

of Aa on fhe“pofenticl velocity, this expression is easier for hand calculations
with the potential theory known.
NUMERICAL METHOD
TRIGONOMETRIC SERIES TO REPRESENT TAE ORDINATES
To use Equation "167, we need an analytical expression for the ordinates. For
tabulated offsets, this means either constructing a Fourier series or curve fitting a

polynomial to the ordinates. As will be shown in this section, a trigonometric

*With R = 1, the linearized expression for velocity would be the some as that
obtained by Riegels” in 1943 if he had recognized that C (©) sin 1 in our E {p)
term is small in the normal incidence angle.
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series may be fitted analyticelly to ordinates given at certain specific stations along
the chord. The slope and cotangent integral then become a summation of the product
of constent ceefficients and the ordinates af these fixed stations.

The formulas used to approximcte the ordinates can be developed by either the
least-square~error approach® ! or by requiring the series to pass through the given
points.~ Both methods are equivalent so we wili outtine the more direct method of
curve fitting through the given points,

Values for the ordinates are required at 2N + 1 equally spaced values of ©

between Q and 2—in Equation 4", i.e., ot the fixed stations

1 +cosfT
x = 7% - N 0<m<2N 217
2 2
Althcugh we have 2N + 1 values of the ordinates, only 2N cre independent since
the periodicity requires Y(Q) = Y{2-), or the mean value if there is a discontinuity

at the trailing edge. Noting that sin N, is zero at all m, we see that Equation 3a

should be truncated to the 2N terms

N-1
Y{p)=a,+ T (c:n cos np+ b, sin nep) + ON cos No

Setting this expression equal to the 2N independent ordinates, we obtain a system of
linear equations to be solved for the coefficients:

N-1
Ym = o, + %: (a,, cos np .+ by sin nfpm)+aN cos N@_

These equations are solved by multiplying both sides of the above equation by the

multiple of the desired coefficient and summing from zero to 2N - 1, Using this

16



approach we obtain the constants

1 2N-1
a =—  _ Y
. o 2N 0 m
2N-1 2N-1 —
i - ] mn
cn=—-N— - Ymcosml: b = — -~ Ymsm N
0 n N,
7 2N-1
a,=—— Z Y _ cosm-—
N 2N 0
4 {Note that for n <N, these expressions are identical with rasults of evaluating integral
’ expressions for the Fourier >onstants by the trapezoidal rule with equal angular spacing
os above.) With Y(0) = 0 = Y(-), the expression for the ordinates, Equation _3a”,
becomes
Y ((:)) = Yodd('p) - Yeven(lp) P22
where
N-1 y N- N-1 ,
Y dd((p\ =7 b,sinnp=— 'i (an"'YZN—m) ~ sin nlpmsinngo 237
1 m=1 n=
N 1 N1 [ N-1
even(('o) =T G, cos np = —-N- - (Ym + YZN—m) [_ : cos nrpmcosnrp
0 m=1 n=1

1 + cos Np,, cos Nep
2 "24”

and Y _and Y o are the upper and lower surface ordinates, respectively, meosured
. . — — m™
from the nose-tail line at p= "= N

The odd part of the series arises from thickness and the even part from camber.

It should be noted that the odd function given above assumes a rounded leading and

17



d(Ym * YZN—m)

trailing edge and the even function assumes finite slope 5
X

at the

leading and trailing edges.
EVALUATION AT SPECIFIED POINTS

The troublescme expressions in T () and S () (Equation T61) are the singular
corangent integral ond the slope, respectively. Using the numerical expressions for
Y (), we can easily perform the necessary operations. The expressions will involve
a double summation as in the Y (@) expression. Since the summation involving
the trigonometric terms is to only a finite !imit, the sum may be calculcied

analytically.* At a point corresponding to an input point (@= ?, =Uﬁ- , vone of the

m), the cotangent integral reduces to

2 wy -t N-1 + Y
1/2=FY'() cot—5— dt =1/2N T [1 — (=" "] m_'"u
o m=1 cos g =1
Y
2N-im
cosr_"ﬁlf -]

(for m =y, the multiple of Y, is easily shown to equal N,2),

Similarly, the slope (in the ¢ plane) reduces to

N-1 r
dY l+m+y (m-y) m (m+u)w
— =1/2 v (1) * iY cot ™5 — - Y, cot ——mr—
(for m = p, the multiple of Ym is zero),

The numerical expressions of Riegels” may be added together to obtain these results.

However, these equations require computation of a N + 1 by N ~ 1 array of coefficients;

*See, for example, References 13 and 14,
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this is a lengthy cal<ulation eithe: by hand or on o high~speed computer. Furiher
simplification is passibie if we define X =m - v in the first term of summetion and

X =m + p in the second. The equatiors then reduce to

. o -t N ] N-l{ 1 - (-1) .

- ! vV = — — - - -
1/2-PY ' (1) cot dt 2YV+ N ‘_{V"\ YL") - 25
A =] <

N-' + - -

vl =1/2 < [YA,,-Y {-1) ] coti— 267
dp ) _ v+ v-A 2N
{pv X-] =
where we understand that = Y2N and Y2N+ = Ym

These expressions are now quite simple and can easily be set up for hand or
computer calculations with a minimum of calculations. It is necessary that only the
ordinates be cyclicaliy resiranged before each computation.

The expressions for T {p) and S (p) at 0 = P, ore now

T =T(p)=-1/2] sinle + NY 1 N (v sy )22 ED e
V: (p’)—-/ smN- V—T\]“_ : -

X =1 v+ v-a l-cos-)g]
=S (o ‘12cos:~+l*\‘!] (Y -Y \(-])xcof A- r28)
=S)=1 v=X ypEA N -5
A=l
and the modified velocity at =0, is
Tvcos(a-a')+5vsin(a—q')
_9_) N -"To cos (= *a) + S sin (2 - “ )3 X
U - dyY
(PU \/]/45”’1 _f_\]—+ —0-;)
Py
. ) e |
Ly o, uT I+ cos -
[l—"?sm—N— R( > N ) h 16a’



EVALUATION AT AN ARBITRARY POINT

As mentioned in the Introduction, the motivation for this research is to obtain
the minimum piessure. Unfortunately, there is no guarantee that the pressure
distribution computed ct the fixed points will yield the minimum value. [f we note
that only when the minimum is near the riose does the pressure distribution hove o
steep gradient, then our problem can be reduced to obtaining more data iust near
the nose.

The procedure outlined for obtaining the siope and cotangent integral at
specified points can be followed for an arbitrary ¢ value. The expressions obtcined
are more complicated but still give a single summation of the ordinates at the input
points and trigonomeiric expressions wsith can be evaluated once and for all af any
desired point. Although the resuits appuar to be new, the derivation is not sufficiently

involved to warrant presentation and we give only the final results:

2- ©-
1/2+=P Y'(t) cot 2 - dt
o
: o o
=f\;-] v ooy \ I'(-])ncos N - 1 sin@p sing
2 m T V2N | ~ ‘ . 2
=1 L ZN (cosp - cosep )
+1 ing
. (-])m sin Ngp | e
2 cosqp ~ COS p
m
N-1 RTLL 1 - cos_cos@
(Y Yo (1) cosNp- 1, i
m=] ™ -m 2N (cos® - cos®@ )
m+1
. (-1 sin Nep sin @ (297
2 cosp - cosQ

-
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oy - ———

Figure 1 — Chordwise Stations x_ =1/2 (1 + cos mz'18)

TABLE 1

Values of x | = 1."2(1 + cos m#.18)

m N o, deg x

0 [ 1.0

1 R 0.922404 ,

2 20 0.969846

3 30 0.$33013

4 40 0.883022

5 50 0.821394

6 50 i 015

] 70 t 0.671010

8 80 0.586824

9 90 f 0.5

10 100 t 0 413176

1 110 0.328990

iz i 120 ; 025
| 13 I 130 \ 0 178606
| 14 | 140 . 0 116878
i 15 j 156 » 0 066987
i 16 ! 160 ! 0 030154
‘ 1 | 17 0 007546
1 15 180 ! 0

x36-m *m
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m+} . .
dy Y ) -1 sin Np _ Sinpgsing
) m 2N-m

—_—F Y
do  m=1 ( 2M (cos® - zosyp_)?
m+1 :
. (-1)  cosNgp st (pm i
2 cosep ~ cosP J
m+1 -
N-1 1) sin No | 1 cos‘Pm cos¢p
SR A S SN
n=1 m 2N (cos ¢p - cos o P
m+ 1
. (-1) cos Nep . sing _l
2 cos @ - cos @ B

In order to obtain a better estimate of the minimum pressure, the velocity is

evaluated at additional points near the nose using these expressions. Choice of

(307

these additional points depends upon the choice of N, In the pressure program, N

will be 18, so that © increases in increments of 10 degrees; see Figure 1 and Table 1.

The intermediate points selected are listed in Table 2. They are each integer
degrees between the nose (0=T) and the input point on each side of it

(o=mz -]%) and three additional points 2 1/2 degrees apart between this point

(o=m % l—n8— ) and its neighbor (= :tl;_ ).

COMPARISONS WITH ANALYTICAL RESULTS

The numerical expressions for the ordinates are obtained by forcing the

expression to pass through specified points. Thus there is no assurance that the

computations will be reasonablie between the points. Also, we have assumed that a
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finer spacing of computed data near the nose is sufficient to determine the minimum
pressure. We cannot check these problems in a general sense, but we can make
comparisons in specific cases.

In order to check the eccuracy of the numerical solution, the computations
were performed both analytically and numerically for the linearized symmetrical
Joukowski profile!®

x = 1/2(1 + cos ©)

YT (sin © - 1/2 sin 20)
added to the parabolic camberlfine®®
Y. = fsin® o
where T is the thickness ratio and f is the camber ratio. The analytical and numerical
solutions were accurate to at least four significant figures when the input was specified
to five significant figures. This accuracy is more than adequate for any practical use.
In order to make a comparison with the minimum pressure computed anclytically
and numerically at discrete points, the results for a symmetrical ellipse were used.
For this simple shape, the location and the value of the minimum pressure are
eosily obtained analytically. From the exact potential velocity distribution
(see Appendix A), we obtain the location of maximum velocity <-37q = 0)
P

from the following equation

T?

sinp(1 = £ )= tanp

tan o =

23



vhere 7 is the thickness ratio. Particular ¢ values can be selected and the angle of
incidence for maximum velocity calculated from this equotion. A graphiccl

comparison of both the location and value of the maximum velocity as computed
analytically and numerically ot the fixed points is given in Figure 2 for thickness

ratios of 0.05 and 0.1. This comparison shows that even though the location in

the nose region may be cff somewhat, the velocity is calculated with sufficient accuracy.

COMPUTER PROGRAM

A computer program has been written for calculating the pressure distribution
by the numerical methed outlined in the previous section. The FORTRAN statements
of the source program are listed in Appendix C. These stctements are for Applied

Mathematics Laboratery Problem 840-041-F.

The order of the computer operations is as foilows: First, the constant coefficients
in Equations £277 through 7307 and other constants are calculated and stored. Then the
input data are read and the summed products of the ordinates and the stored constants
obtained. Finally, for each angle of attack, the pressure distribution ot the input
points and at the intermediate points is determined from Equation 016" (actually Equation
[1éa] of the numerical method) with &' = Aax {(i.e., R=1). Since the last operation
performed is for tae angle of attack, variations in angle of attack take least machine time.
The data needed to compute the pressure distribution consist of the angles, in

degrees, for which the pressure distribution is desired; estimates of the angle of zero

dC
lift,* in degrees, and an average lift-curve slope ccefficient®* n= :i—L— / 2n
a /exp

*Reference 15 finds that 7 is primarily a function of the thickness form and that Ty
is primarily a function of the meanline. Tabulated values for many sections can %
be found in Reference 16. As shown by the data in Reference 16, both 77 and %o,
are functions of the Reynclds number,
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for use in Equation "197; and, of course, the cirfoil ordinates, in fractions of the
chord. The nondimensional ordinates should be occurate to about one-tenth of 1
percent of the maximum ordinate to give a s ooth pressure curve. (Accuracy to four
decimal places is usually suificient.)

The stations for whicl the offsets are 1equired in the numerical method are
given by Equation 7211, shown in Figure |, and tabulated in Table 1, Since these
stations are often inconvenient to use with tabulated data, provision for input ot
arbitrary x values is also provided. The input at the reguired stations is obtained
from a third-degree polynomial fitted through four ordinates, two on each side of
the required station. The interpolation is performed between angular stations since
the ordinates do not then have an infinite slope at the leadirg edge (see, e.g.,
Figure 10). The arbitrary stations should be as near the required values as possible.
This is especially important at the leading and trailing edges.

As mentioned, several input opticns are provided. As with all machine
computations, input must be given in a ronvarying monner; hence the input
descriptions must be rigidly followed,

Option !: Ordinates at Required Stations

The shortest method of data input is to specify ordinates at the required stations.
This type of input naturally results in the shortest running fime since no interpolation
for the ordinates is required. The necessary order of input is shown in Figure 3a
where each horizontal block iepresents a different card starting from Column 1.

However, not all the caras indicated for the angles of attack and the ordinates
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should be filled; only as many boxes as are need2d should be used. (See the sampie

input, Figure 3b.) When several profiies are given for the same angles of attack,

it is important that only similar types of profiles be grouped together (i.e., either
symmetric thickness forms or nonsymmetric combered foils, not beth), When changing
types of foils, o new set of input, starting with the initial control card for the angles,
is necessary. Additional members of a group of profiles require only the cards
indicated under PROFILE INFORMATIONM in Figure 3c.

QOption 2: Ordinates ot Arbitrary Stations

As mentioned, input may also be given at arbitrary stations. Two sub-

r ]

options are considered in this case.
(a) Points on Profile .
The first of these sub~options is to specify points (x, Y) around the foil

in the direction of increasing m (see Figure 1}. The upper surface trailing edge

5

ordinate must be the first point specified and the lower surface trailing edge ordinate
must be the last point given.* The nose (see Equation "B2” in Appendix BY must

also be given befcre the input points. In addition, the nose point should be given
again, in order, midway in the listing of coordinates. The program shrinks and
rotates the coordinat2s to put the nose at (0,0) since this orientation has been found

to be the most accurate, (This point is further discussed in Appendix B.) The rotation

! angle is added to each of the input angles so that 5 ic measured from the original

[ reference line. A maximum of 53 points is permitted.

*Fven though there ore provisions for inserting ordinates ct the trailing edge, a1d though
they are printed out in the pressure program, no use is made of them when computing the
4 pressure distribution. They are used in the interpolation and hence sh.uld not be omitted

when using the arbitrary input option.
27
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Figure 3 — Data Input to Computer at Required Stations
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(b) Values of Thickness, Camber, and Comberline Slepe

The second sub-option is to give values of the station, the thickness, the
camber, and the camberline slope from trailing edge to leading edge. These quantities
are combined in the NACA manner’ ™ (thickness cpplied perpendicular to the camber)
to obtain the coordinates of the foil (see page 113 of Reference 15 and also Equation
_B1” in Appendix B of this report). The coordinates are rotated and shrunk as above.
if the surface is to be computed by Y = Yc z Yf , the camberline slope should be entered
as zero in the input end the nose radius is nof needed. Input at 27 stations is permitted.

The format for data input in both cases above is shown in Figure 4a, and
sample input in Figure 4b.

Other Options

Although not shown in Figures 3a ond 4a, if a 1 is placed in Column 16 of the
control card just before the PROFILE INFORMATION cards, values of the lift
coefficient (as many as the angles and the same format) may be given in place of the
angle of zero lift and lift-curve slope ccefficient. (See the sample input, Figure 4b.)
Note that [ift coefficients must be given for each profile grouped under this control
card. Also, if o 1 is placed in Column 12 of the initial centrol card, only values
of the angle of attack, lift coefficient, minimum pressure coefficient, maximum
velocity, x location, and integrated moment coefficient about the line x = 0.25
are printed oui instead of the complete pressure distribution around the foil . There

is a considerable saving in paper and computer time when using this option.



Figure 4 — Data Input to Computer at Arbitrary Stations
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Figure 4a — Format for Data Input to Computer at Arbitrary Stations
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Figure 4b — Sample Input at Arbitrary Stations
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Sample output for the RAE 101 (10-percent thickness) is shown in Figures 5 and 6,
This is the data plotted in Figure 15. The first fwo pages of output {Figure 5) for each
set of ordinates are titled Profile Constants. The first page includes the stations (column
headed X) and the ordinotes (column headed Y). The column headed C is the velocity
distribution on the profile ot zero angie of attack and the column headed D is the
velocity distribution due to the angle of attack {Equation "157). The column headed
E is a factor necessary to find the nodified, linearized pressure distributior: (see
Equation F20]). These three columns permit rapid evaluation by hand of the
velocity at other than the input angles without rerunning the data. (At the bottom

of the page is an expression which shows how to combine Columns C, D, and E

dY dY
to obtain the linecrized pressure distribution.) The last column is — =-1/2sin0-—.
dct do dx
The theoretical slope factor y ~ /271 c =0 is printed out at the bottom of the
a -

L

page as well as the theoretical ongle of zero lift.
Additional information may be obtained from the data on the Profile Constants

page of output. The angle of attack a: which a stagnation point lies ot the nose, *

{q)

= 0, may be calculated for potential flow from Equation M57:
O=mn,(a=0

C(m) cosg+ D() sing. =0

Cn)

D(~)

a = arctan -~

For » o # 0, the nose stagnation angle may be similarly obtained from the linearized

*This angle is not the same as Theodorsen's ideal angle of attack.” The ideal angle
(for thick foils) is defined as the ungle of which a stagnation point lies at the forward
end of the camberline. As noted by Theodorsen, this angle is of limited practical
importance.
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WITH EuPIRILAL (Cnmu60TI00 FOR vis. 2510y

PROF ILL (v, TANTS

RAt -101-C1C

x v < 14 t vrIPeg
| BTN 24N =G ~0. ~G. Qe 21998
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0. i IR 0322725 CeddYary Ce 096848 TS IRt Oer¥%%2y
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Ce 3. 899 Ce0AVASC t.1395n72 1.422061¢ -lel820t9S Dai0a%eh
De50050 C.0a88c0 1.147311 tel?72a29 ~1e35%832% =0.015%a8
Let7800¢ CeladT40 1.10437¢ 24222437 ~1.465799 ~0.030%.0
C.316978 el 3RG0DY 1e137954 2.6593v5 ~i.696827 - PPIITY Y
GelHOEINY Ca030630¢ 1el2%80% 3.823978 ~2.087953 ~D.0L50aT8
a0 30158 Q.020930 1.007841 5708743 ~2.86347) -0.3%0703
GadGTS90 0.010710 0.94%092 9.983¢601 -4, 773440 0. UtD1S8
0. . -0 17.134931 ~8.056399 =0.00206%
CeCOTS9Y -0.0106710 =0+9450492 F.983¢601 ~4.773448 ~%.9¢01%8
Ce0 30158 ~0.020930 ~1s007041 S.708723 ~2,6806349) ~0.,356743
GeU66987 ~0.03G340 ~1a12548% 3.863970 ~2+087953 ~0.vS0a70
d.116978 =00 33405 11372954 2859395 ~1.696827 ~0e0ALSHHLD
CGe1700600 ~U.04a7%) -t.144379 20222439 =1.06579Q ~0.2305%%
Ce2%0020 =0.04885%0 -1.147931 1771429 =1.308325 =0.01%5543
0. 328992 ~0.049850 ~-5.139587 14226190 1182069 0.204%68
0.41317¢ ~0:04a7445 -lella41l4 11500687 =1.070719 De021690
C.%0naa0n ~0.0482070 -1.083804 0.937296 =%.9678023 G.032369
0.5806824 =0.936360 -1.062834 V. 701407 ~0.865C47 0.03907%
O.u0?30i0 =~0.02934%5 =1+038498 Ot 15677 -0.761927 0.040835
0.750000 ~0.Q223060 -~1.0106276 Ce490314 =0.6%5257 0VeC 38830
G.821394 ~0.015970 =0e997232 0.3808¢8 -0.%45076 0.038149
0.883022 -0.010460 -~0.978338 0.2792%8 -0.a278a% 0.02886)
0.933013 -0.005990 ~0.9586a0 0.1864n7 =0+ 307420 0.02218%
01969040 =-Qe002790 =0.G33471\ 0.0%685%8 ~0.181740 0089520
De9324 24 -0.00%¢80 =0.8900691 0.026481 ~0.069871 D.607287
1.00G000 -0 ~0e -0. De 0.001998

NON-DIMENSIONAL VELOCITY
Va(COoCUSIALFA)eDeSIMIALFA) IO (1 ~/¢0CLTASSUAT(LK=XP023 J2+DELTASE

CL/DUALPHAY/2PT (INEORY)IZ  1.003996
ANGLE +CL30 (THEORY] 2 O. CEG

NOTELTE ORDINATE NOT USED INTERNALLY

AML PROBLEM B840-041,ARBITRAPY AIRFOIL PRESSURF DISTRIBUTION
w1TH EXMOIRICAL CORRECTION FOR VvISCOSITY

PROF ILE COMSTANTS
RAE~101-010
INTERMEL TATE VALUES

UPPFER SURFACE

X C (] [ 3 OYs0PHT
0.C00076 Cel01276 16.982900 ~T.9810671 -0.062038
0.Q0C 305 0.313757 10522598 =1>769532 ~00061960
0.00068%5 G.450819 15.631151 ~1.451068 ~0.001848
0.0012186 04569054 132.992645 =1.0865237 -0.0650689
G.001303 0.667997 14,085385 =t 286289 ~0.,061492
0.002739 074935 13.169452 -6.225003 ~0.0061265
0e003727 0.314890 12.286407 -5+ 022653 ~0.0061012
0.0048606 Oe.867892 11.4529006 =5.442567 ~0.060740
0.006156 0.910580 16,685003 =2+092397 -0.060456
0.01185¢2 1.00%5922 B8.5%01872 ~4,1030)34 =0+059397
0.0817037 1083992 7o 1458806 ~3.584795 ~0.0580609%
0eQ23142 1.0069452 6.436098 -3.181521 -0.057745

LOWER SURFACE
X < o € OY/ZDRHM1
0+0000786 ~0.161276 16.982900 -7.98t671 -0+062C38
0,000130S ~0.313757 146.522598 -T.769532 =0+0019006
0.00053% -G.459819 15.831151 ~7.451068 ~0.,0061848
vs.001210 -0.5869054 14.992645 =7.065237 =0.06106869
0.001903 ~0.567997 14,08539% ~6.64828% ~0.001492
0400739 =0.74913% 13.169452 ~6.228003 ~0.061269%

0.0013727 =Q.014890 12.284467 5. 8226053 =0.061012
0«004RHG «“JeB67892 114523908 e 38587 ~Us Q00780
0.0061%6 ~0+310580 10.685002 ~%.092397 ~0.0604%56
0,0118%2 =1.005922 8.501872 ~4,103034 “D.0LHV397
0.017037 =1.043932 7.385886 ~ 3. 584795 ~G.05860%
OeQ23id2 14069452 6436090 =3.181521 ~Ge 057745

Figure 5 — Typical Output from Computer. Profile Constant~
4 A

33
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WITn EMPInICAL CORKELTION POR ¥IS(OSITY
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0.0630.,2 Q.99 30} ~0.002101 Ce998202 Q.007201 0.011%6%
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Go IHGCOMD 1.0830659 -D.00)3318 Le0AS3aL ~0.069986306 -0.092738
Q.071010 1.0797¢% ~0.20383% 1075931 =0 185893 =0e15%027
Ve968637¢ leltesys “0.204309 t.1303128 «0.2&5900 ~0.23238¢
0500020 1.1%20808) -f8.00823) 1.1408121 =Be 329138 ~0.31829%1)
Deal317¢ letwlbal ~0aUlSItD te1883)e ~C.02aTn4s “0e.si2802
Qe 328990 Fel 38150 =J.uwl9400 1.23289D “deS33010 =0.519%24
0e2%0000 1.273382 «0.20%762 e 2065552 -0.010628% -D.00t022
Oe.17862¢ 14299977 ~0.0%6122 1293607 ~0.6539939 ~0e67404 1}
Celles?s 1.336992 ~9.20000L2 1.33233%% -0.r9291% ~Qe.778)20
De0b69A7 1398211 ~D.D0T8%8 1o 20054 T “0evHa99)Y ~0.933048
G033t 148203 ~0.009832 Le482224 ~te22007% 1190989
V«007598 140%47% 3 ~ge 15807 {39256 ~lel38208 ~1.68719)
C. 1.222838 0. 04%387 14397451 =0.49%33) =Qa.a 33890
0079906 Jeg 30017 A L1110 UVa245727 C.vanbile Ge9)90148
[T PY Y QeI 0209338 C.687103 Daba0 215 DeS27889
Celib9n? CaBaY2? V. 007204 Cots54292 CeiB234S 0.27018%
G.1169758 QeILR1Y C.006319 Ce370 38 Ge.13502% O.28217
D.17806%0 0e382953 0.90%85%0 0.980803 0.033833 V.022209
V0020 10010068 0.005%7% 1.024218 ={a037634 =0e049022
Oe 28920 1035220 0.00%338 1.040358 Q71080 ~0.0827061
Oea13170 1029507 0.00%0728 1 ClesS78 -0.05988% -0.0703%2
0.500002 1.019180 G,00a722 14023943 ~-Q.038729 =0,048879
CeH808c8 1005823 1.604421 1010287 *0.G1:675 =0.020%dR
Ge67101C 0291941 G.004020 0995951 0.0160%3 03080062
0.7%0050 23727 0.03356% G.,982282 Q002412 0.035122
0,821374 2967527 9.003%62 0,970592 0s,06183) 0.3579%¢
Q.083072 956528 0e007%us 0.959032 0.08%50%% 0.080258
C.933013 0.942939 0.001900 Co.984840 0.110867 0.107269
C.9098006 0924185 0.,0%1268 0.9254843 Qe i 490802 0.143537
G.99csacs 0.8R0534 0.7°06% 0.887190 C.214058 G.212894
1.000030 O O Q. 1.0000090 1000000

INTEGHATED Ctex C.4a25%93
INTEGRATED CCa -0.030299
INTEGRATED CH{X)s 0,002425 Co ABT X~e25

INTELRATED CHM{Y)® ~0.004200 Cu ABT Ta0

ANL PHOULEM B40-D41.,ARBITRARY AIRFOIL PAESSURE OISTRIBUTION
wiTe ENPIRICAL CONRECTION FOR VISCOSETY

PRESSURE O15TRIBUTION
RAE-101-0%0

ALF A (48 CELTA SIN(ALFA) LIFT SLOPE ALFA,CL=0
4.,090000 04430129 C.003140 0.071323 0.959000 -G

INTERMEOLIATE VALUES

UPPLR SURFACE

£ POTML VELGC VYISO INCARM  VISC VELOC PO, P/Q visC PO
0.000078 12372143 =-0.,025148 16346954 ~0.88277% ~0.81426%
0.5503LS 1243140% =0.0285063 1+4600841 ~1.224208 ~let310623
0.00%68% 12578301} -0,0230" 1.55519 ~1.4920614 ~l.018629
G.001218 1636931 ~0s027440 1614490 ~1e679%42 ~14506578
0.0C1903 146200912 =0.021175 1e649737 =1¢791948 ~le721832
24002739 16806517 ~0.,019899 1.6606610 ~1.844338 ~1e727610
0.003727 1.6887284 ~0.0180607 1.07007 =1.65%2657 ~1.76%9%9
0.0G4800 1682542 ~0.017%13 1.00%028 ~1+830940 ~le772317
0006146 1.0670352 ~0+.016452 1.953900 ~1.790074 =1e73338s
0.011852 1.0609742 =C.013409 1+5906273 ~1e5912069 ~t.548087
0.017037 1.9%05200 -0.011923 1553343 -1.4500%9 ~le812374
0023342 1+525772 ~0.010735 1515037 ~1.327982 ~1+295338

LO¥ER SURFACE

X POTNL VELOC VISC INCsM  VISC VELOC POt P/O visi P/
0.0000706 1.0%50412 -0.02%123 1.02%289 -~0s103360 -0.0%1207
0+00030% 0+865489 ~0.C24437 0.B&10%5) D.250928 0.292631
0.000064% 0:6794060 ~0.02342% 0+.650603% Ce538334 0.%53618
0.001218 0.501721 =0.022211 0.479510 O.F7a8276 0.77007C
0.00190) 0,338)321 =0.,920900 LERIRASA] 0.885539 0,899248
Ce0027139 01920062 =0.019597 01724065 0.9¢3112 G.9702%6
0.008727 0,06335% ~0.018339 0.04301% 0.995986 0.99797a
0.004806 0.048822 0,01716% 0.06%987 0.997810 0.995646
0.0061506 0.14017) 0.016087 0. 162258 0.978634 0973672
VeB11852 0.396978 0.213070 J.410048 Q.242408 0.8 1860
0.017037 0.517400 Q.011514 052890 Qe732297 Q.7202%0
0023142 0.607684 0,0402321 0.6180006 9.630720 0.618009

Figure 6 — Typical Output from Computer, Pressure Distribution
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velocity given by Equation "207 :

C(-) cosx + D(~) siny =

Usually two iterations are necessory to solve this equation,

Also, if the nose radius is desired, it moy be found from

RN
ST R

If the nose radius is known, this relation provides a check of the computed slope.

Two pages titled "Pressure Distribution" are printed (Figure 6) for each input

angle, The first is the pressure distribution at the specified points and the second

is the pressure distribution at the intermediate points near the nose. Constants printed

out at the fop of the page are for the input conditions. "Delta" stands for 2 7 ,

calculated from Equation 187, and is given in radians. A measure of the accuracy

of the input data is the smoothness of the curve

are magnified when taking the siope.

since small errors in the ordinates

At the botiom of the page with the pressure distribution ot the input points

(Figure 6) are integroted values for:

.
Cy =-172 g50 C, sin @do
\r =
\ C =-¢ &.PY (©) dep
Q
2~
Cy, | =1,20 C sinp(x-.25) dop
‘ M x=. 25 o P
2..
C | =-0 C YY'(p)do

35

The coefficient of force normai
to the chordline, (positive upward)

The coefficient of force parallel
to the chordline (positive in the
positive x-direction)

Moment about the line x = (0. 25
(clockwise positive)

Moment cbout the line Y =0
(clockwise positive)



The lift coefficient is given by CL =C,, cosa - Cc sing, and the moment coefficients

N

about the point (0.25, 0) are given by C (0.25,0) = C + C .
P m m lx-—-0.25 m lY =0

The integrals are evaluated with the trapezoidai rule ot equal angular intervals.
The numerically integrated values should be reasonably accurate, except C, since
there is not a smoothing factor (e.g., sin o, Y) under the integral sign. In fact,
the pressure program gives a nonzero chord force for foils at zero incidence ,
(Potential theory gives zero drag.)

In all cases considered so far, the integrated and set lift coefficients have agreed
within 2 percent.

COMPARISON OF POTENTIAL THEORY WITH OTHER METHODS

Here, comparisons will be made with other methods for calculating two-dimensional

pressure distributions in potential flow. Substituting Equation 76! into Equation 157,

we find for the potential velocity on the profile

—qJ = ] cos g, []/ZSin(p
sin® @ +Y7 ()
VES (o)
2 '
-1/2n§ Y/ (1) (cot 5 - cot t/2)dt]
o
1 - cosp
+ sin “[—_2_— -Y’((D)+Y'(0)J ’ 1317

This is equivalent to the solution obtained by Moriya.8/1°
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nal

Converting this expression to x dependence, we obtain

1Y, (€)=Y, (&)
cos~|1+12- P v L d§

L o x=-§&

= .
VI+Y ()7

\[.T J— Y, (&) LYL'@) J
t 1/2- d§

¥ sinx L Y ) -<YI(X)W——X>1J i r32]

L X \X(]-K)

a
U

where 0 <x~ 1, and Y and YL are the upper and lower surface ordinates, respectively,
measured from the nose-tail line, and primes denote differentiaiion with respect to
the argument.

Riegels and Wittich'” obtained this same equation by noting that linear airfeil
theory, including the thickness correction term in sin a, gives a velocity on the
chordline. They obtained the velocity on the profile from the linearized velocity

q(x,0) by equating integrands of two expressions for the circulation:

= .‘ﬁq(X,Y) ds = q(x,0) dx
q(xlo) = q(X,O)

i.e., X, Y) a
9l ¥) ds/dx 1+ Y (xP

since the singularities enclosed by both paths are the same. This neat trick can

also be used to improve three-dimensional linear theory, '3 14

Equation "32] clearly shows the cr-:s-coupling effects of thickness and camber

in the velocity distribution. If the thickness and camber are wdded and subhiccted to



obtain the ordinates, then the only coupling at zero incidence is the term

\ﬁ + Y’ (x)" which is negligible except near the ncse. Hence the NACA
method” of combining velocity increments computed separately for thickness and
camber can be expected to be accurate everywhere except near the nose. Comparative
calculations have shown that using the NACA tabulated velocity increments' ™ is
sufficiently accurate for most sections but that there is simply not enough data near
the nose even for moderate incidence.

In References 13 and 14, Weber proposes a method of calculating two-dimensiona!

pressure distributions which is based on other wark of Riegels. Her expressions for

C ) (Equation N57) is the same as ours, but for D {p) she obtains

D (p) =D () =\/“

where YT =1/2 (YU -Y

! Yp{£)
1 gy T dé
VYT O) - Jx_g

L)'

This expression gives results which are closer to exact potential theory than does
the method presented earlier in this paper. However the derivation is somewhat
loose when camber is included cnd 1the method does not easily ciiow the insertion
of the experimental lift whiie satisfying the Kutto condition.

The data tabulated in Reference 15 will ba used to compare the approximate
potentiai solution, Equation 327, with the exact solution for the more usua! foils in
use today. Theoretical velocity contributions for a large number of arbitrary thickness
forms, calculated numerizally from Theodorsen's exact method for potential flow,”

are tabulated there. Pressure disiributions at zero angle of attack calculated by that
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method and by the method of this report are compered for three foils--the NACA
16-009, * the NACA G010, and the NACA 65A-~006. As shown in Figures 7 and 8,
the two methods are in close agreement for Loth the NACA 16-009 and the MACA
0010. However, for the 65 form (Figure 9) the methed of this report predicts a small
pressure peak near the ncse. Plotting the ordinates at the angular variable
» = arc cos {2 x - 1) instead of the usual x, we find a hump near the nose (Figure 10).
This hump causes the pressure peak since fairing it out was found to give a smooth
pressure cuive. The numerical method of Hess and Smith™® predicts a similar
peck on this foil (see Figure 42 of Rzference 18). They note ihe important point
that experiments fail to show the peak. The experimental diszrepancy is thought
by the authors to be the result of inaccurate machining near the nose.

To explain the theoretical differences, note the discussion on page 3 of Reference 19
in connection with the design of the NACA 16 series:

“The Theodorsen method as ordinarily used for cclculating the

pressure distributions about airfoils, was not sufficiently accurate near

the leading edge for prediction of the local pressure gradients.™

Because of thisdeficiency, Theodorsen's numerical evaluation of a nonlinear integral
equation was not used for the design of the NACA 6 series foils, but was replaced by

another numerical procedure employing equations similar to the interpolation functions

*The equations
Yr =7 r.98883yx - .23702 x - .04398 x® - .55762x%> 1, 0 < x< .5

Yo =7 101+ 2.325 (1-x) - 3.42 (1-x)7 + 1.46 (1-%)* 1 ,.5 <x < |

give a good fit to the tabulated ordinates for the NACA 16 form. The nondimensional
nose radius is 0,4889 1°, or 0.003960 for the original 9-percent thick foil.

39



ADUIPIIUL 0107 *G00-9L VOVN 10) SUONNINSIJ dNssolf [uoMalooy ], Jo uosiiedwo) — 2 dundiy]

06000° 01
LY200" YOYZ06°
£6900" Y8606
85610 £10£66"
ovizo® | zzoges”
02620° ve£128”
£09£0" %
trivo | otoies”
80KY0" 28085
10k '
81440 antely
1o | ossze
cles0” s
seceo” | 9098Ll
18L70° 8LEOTY
LSIZ0™ 186990
18v10" Y1080
6szou* | o65L00"
0 0
L %
600 ~ 91 VOVN

QUOHD 40 NOLLOVUA
9° g" ¥’

S1 *Joy woay
‘e YOVYN poenqe],

I ] i

B8y
wesfoad

600-91 YOVN

40



ODUODIIUL 0207 * 100 VDY N 0] SHODRGLISIE oanssad ] [BoL0100Yy ], Jo uosusdwo) — § oand1y]
50100 01 z
£6100 HOY266°
15400 9v8606
L5800 £106¢6 A\ -l
19€10 220688 S
98610 " y6£128 al UOH I 40 NOLLOVYUA a1
€920 St 1 8 L 9 S v 3 z 1 [
£82¢0° 0191L9" r NG T | { | } | f 1 o
z68c0" ¥ZH8s"

. 3TTNR g
£oLY0” 9L(gTy Ay -
986¥0 " 06082¢”
1s6vo° e 0100 V3VH
Y99%0° 900021 "
zzivo0- 9L6911" -
SyeCo” 186990
ZLE20" ¥s10¢o" p—
syzie: 96$L00° 2 uresfolg ..
0 0 S1 "J9y woly S ¢
‘e1eQ VOVN Poleinqel |
i S———t
A X
0100 - YOVN

41



for the ordinates (Equations 23] and 7247) used in this report.’®: * For these foils,
it is believed that the complicafed behavior of the "design parameters” near the nose
(see Figure 4 on page 9 of Reference 19) is not adequately represented by such a
finite term approximation for the Fourier series unless ¢ iarge number of terms is used.
Note, in ccatrast, the smoothness of the curves Y (0); see, e.g., Figure 10. Accurate
integration of an irregular curve would depend upon the number of poinis taken,
Theodorsen® recommended five equal divisions between 0 and = with his method.
Reference 15 recommends 40 with the improved method, surely more than enough.
No indication of the number used in the design process is given .n Reference 19,
but 1t is believed to have been insufficient.

So far, comparisons have beer made only for thickness distributions at zero
angle of attack. For cambered foils at an angle of atiack, a potentiai theory
i Lo, = 0) comparison can bz made or Agmay be adjusted to give the same lift. Both
comparisons are shown in Figure 11 for the 4412 at o = 6.4 degrees. (Pinkerton*
gives the potential lift, computed numerizally from exact theory, as CL =6.915
sin (a - o), o, =-0.0706 radians.) It is easily seen that the computed pressure
distribution with the exact lift (C| =1.254) is not in agreement with the results
of the exact potential theory. It should be noted that the results of the exact theory
were taken from the small figure on page 62 of Reference 15, Even allowing for errors
in the transfe; of data, the agreement is only fair at the same lifts. Moreover, the
computed minimum pressure is about 10 percent lower than the "exact, " which

follows the trend in Appendix A, Integraticn of the curves in Figure 11 gives
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CL = 1.274 for the "exact" pressure distribution and CL = 1.242 for the cpproximate

case (2~ = 0), compared to the set C' of 1.254, The difference between the set
and integrated value for the pressure program (approximately | percent) is thought to
be caused by the appreximations in the theory and possibly by inaccurazies in the
numerical method. The disagreement between the "exact" results and the integrated
value (approximately 4 percent) is cbviously caiced ir part by the small size of the
original curve of exact pressire 2o wiich the data were taken. Some of the
discrepancy could al<o be a result of Pinkertun's use of approximate expressions
for € and o That these are approximations is apparent if one compares the expressions
on page 13 of Reference 4 with those in Reference 6 and in the section on
empirical modification given in the present paper.
COMPARISON WITH EXPERIMENTAL RESULTS

COrARISON WITH MEASURED PRESSURE DISTRIBUTIONS

There are few measured pressure distributions tabulated at a sufficient
number of points to accurately define the pressure curve near the nose. The most
comprehensive tests are those of Pinkerton’s™ on the NACA 4412 section. Unhappily,
Pinkerton's measurements are actually for three-dimensional flow over a rectangular
foil with a 30~inch span and a 5-inch chord. The equivalent two-dimensional flow
is found by subtracting the theoretically calculated induced angle of attack from
the geometric angle of incidence. Nevertheless, these tests are often used in
two-dimensional comparisons because of o general iack of experimental data, and

for that reason, we do so also.




Comparison of pressure distributions on the NACA 4412 section at an equivalent
two-dimensional flow angle of 6.4 degrees (geometric incidence of 8 degrees) is
shown in Figure 12, Agreement on the upper surface is excellent, but the lower
surface shows slight differences. As expected, there is discgreement near the
trailing edge coused by the thickening boundary layer. Also shown in Figure 12 is
the pressure distribution computed from ordinates interpoiated {in the pressure program)
from the tabulated measured® offsets of the foil. Some of the humps and hollows in the
measured pressure distribution are better predicted, but a new predicted hump is also
obtained at quarter chord. (The measured nondimensional ordinate at this point is
0.0012 greater than the computed value.) Essentially though, the pressure distribution
is the same as for the mathematical ordinates.

Reference 3 contains one of the few tabulated sets of measured two-dimensional
pressure distributions with a sufficient number of experimental points near the nose.
The model tested was a symmetric RAE 101 section with a 30-inch chord and 10-percent
thickness ratio. The large model (surfaces were accurate to + 0.0003 c) and
accurately measured angle of incidence (to the nearest 0.01 degree) makes these
tests valuable for comparative purposes.

Two Reynolds numbers were considered in the experiments. For comparison,
we have selected the lower (Re =1.6x '0°) since it corresponds to a lower Mach
number (U = 100 ft/sec). (It is not completely clear whether or not compressibility
corrections were applied to the data.) Measured and predicted pressure distributions

are shown in Figures 13, 14, and 15 for three angles of attack: 0, 2.05, and 4.09
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degreas. Agreement is excellent except at the trailing edge. This deviation is
again due to the rapid thickening of the boundary layer at the trailing edge.
COMPARISON WITH MEASURED CAVITATION INCEPTION

Although measured pressure distributions are hard to find, incipient cavitation
tests have been conducted in several laboratories. With the classical assumptions
that cavitation starts when the loca! pressure falls to the vapor pressure of the flowing

fiquid, cavitation inception may be predicted from the pressure distribution since the

P~ P,
cavitation index ¢ = —1%——65— is equal to minus the minimum pressure coefficient
i/ LPU”
" Pmin /
..CP = W . It is important to note that unsteady effects are not considered

min

when computing the minimum pressure. That is, the festing is actually done for either
varying P_" or©” whereas the predictions are for fixed flow conditions. This means
that there s some doubt that the predicted miminum coincides with the actual test
minimum. Assuming thai they are equal is the usual "quasi-steady" approach, generally
the only reasonable basis of solution. For the (assumed) slow variations in flow
conditions here, it is reasonable to expect they would be equal.

Cavitation inception data from two different laboratories will be considered:
(1) tests by the California Institute of Technology (CIT)™? on the NACA 4412 section
for various Reynolds numbers and (2) tests by Vosper Limited”” on elliptic-parabolic
sections of various thickness and camber ratios {NACA a = 1 camberline) at constant
Reynclds number (R, = 1 10 ).

Measured values™ of o, for (visual) inception and disappearance of ccvitation

at two different Reynolds numbers are compared with measured”” values of ~C
min



for the NACA 4412 in Figures 160 and 16b. Predicted minimum pressures were
computed for values of 71 and %o, interpolated from subcavitating tests  of the
foil used in the 'nception tests.

The gocd agreement of predicted and measured -Cpmin is surprising since the
angles of zero lift and lift~curve slopes are not the same in the vorious tests. Also,
‘or negative angles of attack, the measured pressure distribution was not taken ot
sufficient number of points to ensure obtaining the minimum pressure,

Cavitation prediction from computed minimum pressure is not in such good agreement
(the piediction is conservative) although agreement improves with increasing test
free-stream velocity. Some of the discrepancy may be attributed to nonstecdy effects
(resulting in a poor prediction of the minimum pressure) although, as already
discussed, such effects should be small. Again the foult seems to be with the assumption
that cavitation begins when the local pressure falls to the vapor pressure.* Perhaps
equally impertant in accounting for the inaccurate prediction is the small size of the
mode! (3-irich chord). For such a smail model, slight machining errors could result
in iaige changes from the computed pressure distribution. It would thus be of con-
siderable interest 1c have measured ordinates rather than ordinates for only the
mathematical foil.

Machining should be most inaccurate for the rapidly changing geometry of the

nose, and at negative angles of attack, the minimum pressure is close to the nosz,

*This has been known for a considerable time although it is generally assumed that

for "engineering problems, " conditions are such that the assumption is adequate.
(See References 23 and 24.)
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It is possible, then, that machining inaccuracies also coniribute to the large differences

at negotive incidence.

Since the incipient cavitation number for two-dimensional hydrofoils increases
with increasing free~-stream velocity and since, in "certain instances, " increasing
the body size alsc increases the incipient cavitation number,2® it is imperative that,
with cur present lack cf krowledge of the proper scaling laws, laboratory testing
should be done for environments approaching full~scale conditions if meaningful data
are to be taken. A better alternative is to develop realistic scaling lows so that
models of small size mey be tested at low-Reynolds numbers.

The cambered 9-percent thick foil was selected for comparison with the Vosper
test data. in these tests, only (visual) cavitation disappearance was recorded.
Experimentcl_ and predicted vaiues are shown in Figure 17. Figure 17a gives the
raw data points and Figure 17b the faired data corrected (by Vosper) for tunnel
interference. The raw data are included o show the experimental scatter. In both
cases, the prediction is based on the experimentcl| lift-curve slope corrected for
tunnel interference. The raw data show that the agreement for angles greater than
zero is generally good except for the one point at 1/2 degree. For negative angles
of attack, the prediction is again too conservative,

Although the model chord was relatively lorge (8 inches) in these tests, the
machining was accurate to only + 0.005 inch®? or £ 0.0006c. From actual numerical
test coses run using the pressure program, aandom differences of this size in the
ordinates could account for the unusual result that G >- CP near zero angle

min
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of atiack. (However, 0> CP . at small incidences was aiso found for other foils
min

tested by Viosper. 1t is interesting to nole that the air content during these tests was

only 50 percent of saturation®® wherecs air content for the CIT tests was about

85 percent of saturation.??)

Although measured ordinates would be usefu!l in determining more precisely the
differences between o, and - Cpmin’ the differences are too great to be attributed
solely to inaccurate machining. Most of the differences seem a result of assuming
that cavitation occurs when the local pressure falls to the vapor pressure,

SUMMARY AND CONCLUSIONS

A numerical method for calcuiating the two-dimensional pressure distribution
on arbitrary profiles with arbitrary lift has been explained. The development is-based
on an empirically modified, approximate, conformal transformation of the circle and
is limited to flow conditions befcre stall. In all cases considered so far, the numerical
approximate method gives integrated lift coefficients that differ by less than 2 percent
from the essigned value,

For the examples tested, when the pressure distribution about a foil af a given

incidence is computed with the cppropriate lift, agreement is good with both exact

potential theory and experimental results. Comparisons with measured pressure

distributions show considerabie disagreement near the trailing edge caused by the thicken-

ing boundary layer. The assumed empirical modification introduced in the potential
theory cannot adequately represent the flow conditions near the trailing edge since
it assumes a stagnation point there in contrast with the experimental result of almost

free~stream pressure.
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Although predicted pressure distributions agree well with measurement, comparisons
of the minimum pressure coefficient aad the incipient cavitation index show differences.
In the example considered, the diffzrences decrease with increcsing test Reynolds number
(i.e., free-stream velocity). Alse, covitation prediction on the upper surface is better
than on the lower and is generally conservative on both. Some of the discrepancy
may be explained by machining inaccuracies, especially near the nose. Hence, it would
be of interest to have measured ordinates to use in the pressure program when maoking
comparisons with the test results. If we assume that nonsteady effects in the testing
were small, most of the differences seem a result of cavitation not occuring when
the minimum pressure is equal to the vapor pressure. This points out the need for a
better scaling law if laboratory data are to be useful in predicting full-scale results.

This investigation hos called attention to two areas of deficiency in experimental
results. First, therz is a lack of pressure distributions on two-dimensional campered
foils. Second, cavitation inception tests have not been carried to the point of
constant o; for increasing Reynolds number. Further investigation in both of these
areas would be valuoble to further confirm the cealculation method of this paper.
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APPENDIX A
EXAMPLES OF EXACT CONFORMAL TRANSFORMATION

if specific numbers are substituted for the transformation coefficients in Equations
[2]and [3], we ;vill obtain foil shopes from exact theory which can be used to chezk
the cpproximate method where x has been approximated by Equation 4§
SYMMETRICAL FOILS

Consider first symmetrical shapes. These forms will be generated if all B_ are
zero. For our purposes, sufficient generality is obtained by setting ail A n>2,

to zero. Then we have

x = A +(A_{+Ay)coso+ Ajycos 29

Y = (A -Al )sin'p-Azsin 2

-1
Letting ¥ = ¢ (sin © - 8 sin 20) and requiring x to lie between 0 and 1, we obtain

x = 1/2(1 + cosp) + €5 {cos 20- 1)

From Equation (147, the exact velocity is obtained:

[sing cosa + {1 - cos) sing ]

Also, from Equation [12]the lift coefficient is

CL = 21 (14 2¢)sing
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First, consider the case 6 = G, then

Y

€ sin

X 1/2( 1+ coso)
which is the ellipse of thickness ratio 7 = 2¢.

The velocity and lift coefficient are

sinpcose, + {1 - cosp) sing,

= (1+7)
U sinfp+ 7 cos®eop

CL = 2% {1+ 7)sing
(Note that this includes the special case of the flat plate, + = 0.)
Since x is precisely the form of the approximation, the velocity from the

approximate method is-also exact,

For the case of nonzero € and §, we can find © in terms of x:

V1/4-85¢(1/2-2¢ §-x) - 1/2
45¢

in = arc cos

and obtain © values which give x, Y, and q/U at the x values used in the numerical

method. This has been done for four cases:

T=0-2

6 =1/2 ;T=O.‘.
B r=0.,2
5 = 1/4 ;7=0.1

For 8 = 1/2, the foil has a cusped tail similar to the Joukowski foil. Maximum

Y value occurs at ¢ = 120 degrees, from which ¢ = . A comparison of exact

27
33
and approximate values is given in Part (A) of the following table.
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TABLE A-1

Comparison of Exact and Approximate Veloeity Distribution for Two Foils

x=-;-(lwcoso)‘ z (cos 20 - 1)
4)  For the Foil: 3v3
Y = :‘;3 (smo --zl,- sin 20y
7=.20 7=.10

x N Y’i‘ Cexact Capp.'ox Dex:zct Dappx'ox Yt Cexncl capprox Dexncl Dapprox

0 ¢ c 0 7.4952 | 6.4036 1 0 0 13.9904 |12.2480
.007596 .031655 L7370 .7388 | 7.0136 | 5.9955 .014381 .9340 .9343 | 9.8212 | 9.0912
.030154 .059631 1.2296 | 1.2525 | 5.8179 | 4.9847 .027447 1.1659 | 1.1662 § 6.0849 | 5.6346
.066987 .081097 1.4283 | 1.4316 | 4.4618 | 3.8352 .038080 | 1.2116 | 1.2119 | 4.1536 | 3.8577
.116978 094556 1 1.4422 | 1.4454 | 3.3303 | 2.8741 .045505 1.2072 | 1.2075 | 3.0585 | 2.8341
.178696 .099855 | 1.3793 | 1.3828 | 2.4984 | 2.1657 .049373 | 1.1846 | 1.1849 | 2.3431  2.1746
.25 .097881 1.2979 | 1.3004 | 1.9067 | 1.6603 049755 1 1.1547 | 1.1549 ) 1.8465 | 1.7154
.3289%0 .090159 1.2182 | 1.220%4 |} 1.4824 | 1.2965 .047083 1.1225 { 1.1228 | 1.4816 § 1.377%
.413176 ! .078485 | 1.1479 | 1.1499 | 1.1708 | 1.0282 .042038 { 1.0908 | 1.0910 | 1.2027 { 1.1137
.5 .064652 | 1.0882 ;| 1.0%00 .9351 .8244 .035440 | 1.0609 | 1.0612 .9826 .9157
.586824 ' .050267 1.0386 ; 1.0402 .7516 .6649 .028131 1.0339 i 1.0341 .8043 .7502
.671010 i .036642 .9977 .9992 .6045 .5364 .0202881 1.0099 | 1.0101 .8562 .6127
.75 .024738 .9645 -9659 .4832 .4295 .014317 .9893 .9894 .5304 .4955
.829394 | .C15149 .9379 .9392 .3604 .3392 .008881 L9719 .9721 .4212 -3939
.883022 ; .008111 81 .9184 .2909 .2598 .004805 .9579 -9581 .3242 .3033
.933013 ! .093540 .9016 .9028 .2108 .1886 .002114 .9471 .9472 .2361 .2210
.959846 é .001074 .0908 .8919 .1372 .1228 .000645 .9394 .9396 1542 .1443
.992404 .000136 .8844 .8855 0676 .0506 .000082 .9348 .9350 .0761 .0713

1.0 0 0 0 0 0 1] 1] 0 0 1]
rx =-%(1 05 ) + <= (cos 20 - 1)
B) For the Foil: 4 €= 454177
L{ = elsin ¢ -i‘-sin 20)
T=.20 7=.10

X Yo Cexact Capprox Dexact Dapprox YT cexact c:appx-ox Dexac( Dapprox

0 0 { 0 0 8.6728 | 7.9168 0 0 0 16.0122 {15.3005
.007596 .025944 . 7397 L7403 1 7.6502 § 6.9847 .012328 .9377 .9378 10,2197 | 9.7659
.039154 .049890 ¢ 1.1375 | 1.1384 | 5.8403 | 5.3350 .023323 1.1206 | 1.1207 | 6.0605 | 5.7921
.066987 .070132 1.2895 | 1.2904 | 4.3603 | 3.9865 .033746 { 1.1585 | 1.1586 | 4.1239 | 3.9420
.116978 LOE5472 1.3270 | 1.3280  3.3070 | 3.0269 .041532 | 1.1621 | 1.1622 | 3.0462 | 2.9125
. 178606 .055321 1.3143 { 1.3152 | 2.5600 | 2.346% .046838 1.1532 | 1.1534 | 2.3602 | 2.2572
.25 .099687 1.2803 | 1.2812  2.0171 | 1.8513 .049562 1.1387 | 1.1588 | 1.8827 | 1.8012
. 328990 .099065 1.2388 | 1.2397 | 1.6117 | 1.4813 .049827 1.1214 | 1.1215 | 1.5294 | 1.4637
.413176 .094293 1.1964 | 1.1972 | 1.3008 { 1.1973 .047942 1.1032 | 1.1033 | 1.2560 | 1.2024
.5 .086389 1.1563 | 1.1571 | 1.0565 .9738 .044342 | 1.0850 { 1.0851 | 1.0369 .9931
.586824 076410 1.1201 § 1.1208 . 8558 .1936 .039526 | 1.0678 | 1.0678 8565 .8205
.671010 .065341 1.0881 | 1.0888 .6979 .6449 .033997 1.0518 | 1.0519 .7043 .6750
.15 .054009 1.0605 | 1.0611 .5615 .5194 .028205 1.0375 | 1.0375 .5730 .5493
.821394 .043034 1.0369 | 1.0375 .4438 .4109 .022512 1.0249 | 1.0250 .4573 .4385
. 883022 .032809 1.0166 | 1.0171 . 3399 .3149 .017162 1.0141 | 1.0142 .3533 .3388
.933013 .023505 .9976 .9982 . 2457 L2278 .012279 1.0047 | 1.0048 #2577 .2472
.969846 .015089 .9733 .9739 .1678 .1464 .007867 .2948 .9949 .1679 .161%
. 992404 .007358 .8984 .8988 .0723 .0670 .003830 .9695 .9696 .0812 0779

1.0 0 0 0 0 0 0 0 (4] 0 0
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For § = 1/4, the treiling edge is rounded and the gensral foil shape is similar
V3 -1
to conventional foils. The maximum value of Y occurs at ¢= (s - arc cos =™},
for which € = 0.45417 7. A comparison with the approximate solution is given in
Part (B) of the tabie.

These examples show negligibie differences in the C () component of velocity
for the 10-percent thick foils. For the 20-percent thickness forms, the differences
are larger but still slight. It is inferesting to note that the approximate velocity is
greater than the exact in this case. The D{©) component of velocity shows large
'differences, but the approximate velocity is lower than the exact in this case, which
is the trend indicated by viscous effects. Also this is the component of velocity
which is multiplied by sina so that its contribution to the total velocity is small
in the normal incidence range.

In general, these comparisons indicated that there are larger errors in the
approximate computations for foils which show large departures from an ellipse.
Most foils in use today have their maximum thickness near midchord and do not have
cusped tails; both of these properties contribute to accurate calculations.
CAMBERED FOILS

For foils with camber, we consider terms in Equation {21 and 31 to the
second harmonic; i.e.,

x=A +(A _+A)coso+(B. ~B )sinp+ A_cos 2p+B_sip 2
o -1 1 1 -1 2 : 2

Y=Bo +(A_] - A]) sun<p+(B_] + B]) cos<P-A25m 20+ 82 cos 20
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We take

Y = ¢ (sin®- §sin 2(,{))*!*—2it (1=~cos 20)+ 7 (1 - cosg)

d
and set — =0, x(0) =1, x{w) =0 to obtain
dp | ©=0

f
x = 1/2( 1+ cos®@) + ¢ §(cos 2p- 1) + fsin® - ; sin Zp
dx )
Unfortunately, * these foils do not have "y =0 at the leading edge which means
there is some overhang there. The constant 7 is included to raise the nose to lie

close to the x axis. The velocity distribution on these foils is

cos o [(1/2+ €) sinpp+ (f+7) (1 - coso) ]

!
I

q _ +sina [{(1/2+ ¢) (1 = cos) - (f+7) sinep |
U =

—d_)i—24- -é—y—z

dp  dp

d
where EX_,—.-. ~1/2sin®+ f cosp - 2 €g sin 29 - f cos 29
N

—:—w—-=e(c05fp-26 cos 2p) +7 sing+ f sin 2¢
e it cosficiont is € = 2 2L AN
The lift coefficient 1sCL- L 1 1+ 2 ¢ sin (o - %),
L A)
% = - arctan T+2¢

The complexity of the x (¢} term does not permit easy inversion to obtain

©=¢ (x). Instecd, we simply calculated x, Y, and q/U at many ¢ values and put

*Nor do these expressions permit us to put ¢ = 0 ond obtain simply a camberline
shape since the x relation would then give a curve which crosses itself and hence
is meaningless.
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the (x,Y) relation into the arbitrary input section of the pressure program. Since we
were unabie fe calculate the exact velocity at the points of the numerical method,

the comparisons must be made graphically.

27

33

with 7=0.10. The constants f and ¥ were first taken as 0.03 and 0.0}, respectively,

The thickness porticn of the foil was tcken as Yo = (siho -1/2sin 20)

which gives a camber ratio of about 0.0369 and then f and ¥ were taken as 0.015 and
0.0075 which gives a camber ratic of about 0.0185. The foil shapes--rotated crd
shrunk to put the nose ot (0,0j--and velocity distribution computed from exact theory
and the approximate theory are shown in the following figures for both cases at two
angies: 0 and 5 degrees (angles referéhc;ad to the unrotated foil shape). The
-:alcu!aﬁonséhow the approximate method is suificiently accurate for practical use
at 0 degrees. At 5 degrees, the approximation is showing erough error to be
questionable from a potential standpoint. However, the error is aguia in the direction
indicated for viscous effects.

Also shown in these figures is the velocity distribution computed with Aa
adjusted to give the same {ift as the exact theory. These comparisons indicate that the

approximate method is sufficiently accurate for most work when the lift coefficient

is known,
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APPENDIX B
DISCUSSION OF AIRFOIL GECMETRY

In many cases, a thickness distribution is combined with @ camberiine by laying
off the thickness ordinate perperdicular to the camberline.?® One result of this
combination method is a nonzero ordinate at the leading edge (the cenier of the nose
radius lies along the camberline tongent ot the lecding edge'S). A feim may be
added to Equation 7247 to inciude the nonzess ordinate at the nose. However, when
that was done for the INACA 4412, the computed pressure distributions gave a greater
negative peak for positive incidences than either the experimental or exact potential
values. This result could be anticipated from @ consideration of the approximations
in the theory. At the nose, the velocity due to thickness is zero and the only
velocity is that of the camberline. Since the velocity at a point is considerably
influenced by the ordinate at that point, a large ordinate at the nose means a large
camberline velocity and correspondingly large eirors in the computed velocity. To
handle this nose ordinate, the profile can be rotated to put the nose et {0,0). When
the pressure distribution was computed for ¢ rotated foil, again the 4412 section,
reasonable resulis were obteined although the predictions for potential flow
( Ao =0) were somewhat lower than the exact results (see Figure 11), as expected
from the comparisons in Appendix A.

In order to rotate the foil, it is first necessary to determine the nose point

accurately, Points along the profile are detemmined from the expressions* 13

*These expressions would follow more logically if the abscissa for the thickness ordinate
were measured along the camberline. Presently, this is not done.1®

62



upper surface: {x - Yy sin 8, Y+ Yg cos §)

lower surface: (x + YT sin @, YC - YT cos §) B-1]

where

., YT is the thickness ordinate,

Y . is the camberiine ordinate, and

C

dY

8 is the camberline inclinaticn, 8= arctan y ) .
X

X

However, these expressions do not give a vaiue for the nose point. The nose can
be found by recalling that the center for the nose radius lies along the camberiine

tengent at the leading edge, * as below

Y

A
/ dY .
/ o Y- 8, p = arc fan
~ Pt dX —
(XN 7 Y N) _ x=0
! LE eLE
X _
I = -
Hence, the nose (the point of minimum x) is given by
= o - A
X= P ll-cosp g
YN =PLEsin eLE 8-21

The nose can be put at (0,0) by the coordinate system translation {maintaining a

chord length of unity):

*See footnote on preceding page.




x =~ X

e N
}-XN
Y-Y
N
VTR, "
"N

Then the coordinates can be rotated through the angle

N

w = arctan

B4
- Xy

to measure the ordinates from the nose~tail line. The new coordinctes with a

chordlength of unity are
Xcos- Ysinw
X = Y 2
SN AN

\1 - %/

Y cos py+ Xsinw

Y = fB-S]
R [ Y 2 L
B

In the pressure program, the rotated ordinates are found from Equation {B-5].

Aithough the above expressions are exact, they do require interpolation between
the computed values, or an iteration, to find the ordinates for a fixed <tation.
An alternative is an approximate equation for combining a camberline and thickness
distribution for fixed x. Such an expression may be obtained by expanding the

difference between the known ordinate in Equation B-1] and the unknown ordinate
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at x in a Taylor series. The results, retaining only the lowest order terms, are

4
Y. =Y +Y V}+Y&2+Y YC'

-

U cC T T

= - <+ r2 _ 4 7 B-.‘
YL YC YT 1 YC YTYCJ fB-&

-

where primes denote differentiation with respect to x.

With YT =2 pLE x + ... these expressions give the nose as {0, YN) where
—_ 4
Y N~ pLE Y C {0).

The retation to put the nose at (0,0) is approximately

XR ~X

YR ~Y - YN (1-x) {B-71
These expressions are quite accurate for small thickness and camber ratios.

However, they are rot used in the pressure program and are included only to show

a method of combining a thickness distribution perpendicular to a camberline at

fixed x so that ordinates may be obtained af the stations required in the pressure

program. As already mentioned, there is a considerable saving of machine time when

the ordinates are given at the required stations.
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APPENDIX C

LISTING OF THE FORTRAN STATEMENTS
FOR THE PRESSURE PROGRAM
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